- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0002000002000000
- More
- Availability
-
22
- Author / Contributor
- Filter by Author / Creator
-
-
Wang, Huayi (4)
-
Xu, Jun (4)
-
Meng, Jingfan (3)
-
Ogihara, Mitsunori (2)
-
Gong, Long (1)
-
Rong, Kexin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 15, 2025
-
Meng, Jingfan; Wang, Huayi; Rong, Kexin; Xu, Jun (, IEEE)Free, publicly-accessible full text available December 15, 2025
-
Meng, Jingfan; Wang, Huayi; Xu, Jun; Ogihara, Mitsunori (, Proceedings of the VLDB Endowment)In this work, we formulate and solve a new type of approximate nearest neighbor search (ANNS) problems called ANNS after linear transformation (ALT). In ANNS-ALT, we search for the vector (in a dataset) that, after being linearly transformed by a user-specified query matrix, is closest to a query vector. It is a very general mother problem in the sense that a wide range of baby ANNS problems that have important applications in databases and machine learning can be reduced to and solved as ANNS-ALT, or its dual that we call ANNS-ALTD. We propose a novel and computationally efficient solution, called ONe Index for All Kernels (ONIAK), to ANNS-ALT and all its baby problems when the data dimension d is not too large (say d ≤ 200). In ONIAK, a universal index is built, once and for all, for answering all future ANNS-ALT queries that can have distinct query matrices. We show by experiments that, when d is not too large, ONIAK has better query performance than linear scan on the mother problem (of ANNS-ALT), and has query performances comparable to those of the state-of-the-art solutions on the baby problems. However, the algorithmic technique behind this universal index approach suffers from a so-called dimension blowup problem that can make the indexing time prohibitively long for a large dataset. We propose a novel algorithmic technique, called fast GOE quadratic form (FGoeQF), that completely solves the (prohibitively long indexing time) fallout of the dimension blowup problem. We also propose a Johnson-Lindenstrauss transform (JLT) based ANNS-ALT (and ANNS-ALTD) solution that significantly outperforms any competitor when d is large.more » « less
-
Gong, Long; Wang, Huayi; Ogihara, Mitsunori; Xu, Jun (, Proceedings of the VLDB Endowment)
An official website of the United States government
